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Abstract
We discuss dualities in the integrable dynamics behind the exact solution to the
N = 2 SUSY Yang–Mills theory. It is shown that T duality in the string theory
is related to the separation of variables procedure in the dynamical system. We
argue that there are analogues of S duality as well as three-dimensional mirror
symmetry in the many-body systems of Hitchin type governing the low-energy
effective actions.

PACS numbers: 1130P, 0230, 1125

1. Integrability and low-energy effective actions for N = 2 SUSY gauge theories

The description of the strong-coupling regime in the quantum field theory remains a challenging
problem and the main hope is connected to discovery of new proper degrees of freedom which
would provide a perturbative expansion distinct from the initial one. The first successful
derivation of the low-energy effective action in N = 2 SUSY Yang–Mills theory clearly
shows that the solution of the theory involves new ingredients which were not familiar in this
context previously, such as Riemann surfaces and meromorphic differentials on it [1].

The general structure of the effective actions is defined by the symmetry arguments; in
particular, they should respect the Ward identities coming from the bare field theory. For
example, the chiral symmetry fixes the chiral Lagrangian in quantum chromodynamics (QCD)
and the conformal symmetry provides the dilaton effective actions in N = 0 and 1 Yang–Mills
(YM) theories. Since the effective actions have a symmetry origin one would expect that the
universality properties and generically different ultraviolet (UV) theories can flow to the same
infrared (IR) ones. It is the symmetry origin of the effective actions that leads to the appearance
of the integrable systems. The point is that the phase spaces for the integrable systems coincide
with some moduli space or the cotangent bundle to the moduli space. We can mention the
KdV hierarchy related to the moduli of the complex structures of the Riemann surfaces, the
Toda lattice related to the moduli of the flat connections or Hitchin-like systems connected to
the moduli of the holomorphic vector bundles. In any case moduli spaces come from some
additional symmetry of the problem.
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Identification of the variables in the integrable system responsible for some effective
action is a complicated problem. There is no universal way to introduce the proper variables
in the theories which are not topological, but there is some experience in two-dimensional
(2D) theories [2] which suggests identifying the non-perturbative transition amplitudes among
the vacuum states as the dynamical variables. As for the ‘spacetime’ variables, coupling
constants and sources are the most promising candidates. It is expected that the partition
function evaluated in the low-energy effective theory is the so-called τ -function in the integrable
hierarchy which is the generating function for the conserved integrals of motion. The particular
solution to the equations of motion in the dynamical system is selected by applying the Ward
identities to the partition function of the effective theory.

The arguments above explain the reason for the search for some integrable structures
behind the Seiberg–Witten solution to N = 2 SUSY Yang–Mills theory. These integrable
structures which capture the hidden symmetry structure have been found in [3], where it was
shown that an ANc

affine Toda chain governs the low-energy effective action and the BPS
spectrum of pure N = 2 SYM theory. The generalization to the theories with matter involves
a Calogero–Moser integrable system for the adjoint matter [4] and an XXX spin chain for the
fundamental matter [5]. In five dimensions the relativistic Toda chain appears to be relevant
for the pure gauge theory [6], while the anisotropic XXZ chain is relevant for SQCD [8].
As the next step a completely anisotropic XYZ chain has been suggested as a guide for six-
dimensional (6D) SQCD [8], while the generalization to the group product case is described
by the higher spin magnets [7]. The candidate system for 6D theory with adjoint matter based
on the geometry of an elliptically fibred K3 manifold was suggested in [25] (see also [27]).
Therefore, there are no doubts as to the validity of the mapping between effective low-energy
effective theories and integrable finite-dimensional systems.

The list of correspondences between two seemingly different issues looks as follows. The
solution to the classical equation of motion in the integrable system can be expressed in terms
of a higher-genus Riemann surface which can be mapped to the complex Liouville tori of the
dynamical system. It is this Riemann surface which governs the Seiberg–Witten solution, and
the meromorphic differential introduced to formulate the solution coincides with the action
differential in the dynamical system in the separated variables. The Coulomb moduli space in
N = 2 theories is identified with the space of the integrals of motion in the dynamical system;
for example, Tr φ2, where φ is the adjoint scalar field coincides with the Hamiltonian for the
periodical Toda system. The parameters of the field theory such as masses or �QCD determine
the parameters and couplings in the integrable system. For instance, in SQCD fundamental
masses provide the local Casimirs in the periodical spin chains.

In spite of many supporting facts, it is necessary to obtain a more transparent explanation
of the origin of integrability in this context. To this end let us discuss the moduli spaces
for the problem at hand. Classically there is only a Coulomb branch of the moduli space in
the pure gauge theory, so one can expect a dynamical system associated with such a phase
space. The Coulomb branch can be considered as a special Kahler manifold [1], while the
Hitchin-like dynamical system responsible for the model has a hyper-Kähler phase space
[11]. The resolution of the contradiction comes from the hidden Higgs-like branch which has
a purely non-perturbative nature [7, 12]. It is the dynamical system on this hidden phase
space that provides the integrable system of the Hitchin or spin chain type. Therefore,
there are two moduli spaces in our problem and one expects a pair of dynamical systems.
This is indeed what we have; a dynamical system on the Higgs branch yields the Hitchin-
like dynamics with the associated Riemann surfaces, while the integrable system on the
Coulomb branch gives rise to the Whitham dynamics. The role of the Hitchin system is
to incorporate the non-perturbative instanton-like contributions to the effective action in a
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supersymmetric way, while the Whitham dynamics is nothing but the RG flows in the model
[3]1.

The next evident question concerns the degrees of freedom in both dynamical systems.
The claim is that all degrees of the freedom can be identified with the collective coordinates
of a particular brane configuration. First, let us explain where the Higgs branch comes from.
The basic illustrative example for the derivation of the hyper-Kähler moduli space in terms
of branes is the description of ADHM data as moduli for a system of coupled D1–D5 or D0–
D4-branes [15]. If the gauge fields are independent on some dimension one derives a Nahm
description of the monopole moduli space in terms of a D1–D3-branes configuration [16]. The
transition from ADHM data to the Nahm ones can be treated as a T-duality transformation.
At the next step the hyper-Kähler Hitchin space can be obtained by reducing the dependence
(or additional T-duality transformation) on one more dimension. This corresponds to the
system of D2-branes wrapped around some surface � holomorphically embedded in some
manifold. The most relevant example concerns T 2 embedded into a K3 manifold [17]. The
T duality along the torus transforms it to the system of D0-branes on the dual torus, which is
the most relevant picture for the Toda dynamics in terms of D0-branes. The related discussion
for the derivation of the Hitchin spaces in terms of instantons on R2 × T 2 can be found in
[18].

Let us now proceed to the explicit brane picture for theN = 2 theories. There are different
ways to find it, one involves 10D string theory compactified on the manifold containing the Toda
chain spectral curve [20], or M-theory with an M5-brane wrapped around the non-compact
surface which can be obtained from the spectral curve by deleting a finite number of points
[21]. This picture can be considered as the perturbative one and non-perturbative degrees
of freedom have to be added. For this purpose it is useful to consider a IIA projection of
the M-theory which involves Nc D4-branes between two NS5-branes located at a distance
ls
g2 along, say, the x6-direction. Field theory is defined on the D4-brane worldvolume [22]
and an extensive review concerning the derivation of field theories from branes can be found
in [23]. The additional ingredient yielding the hidden Higgs branch comes from the set of
Nc D0-branes, one per D4-brane [7, 12]. It is known that a D0 on D4-brane behaves as
an Abelian point-like instanton but now we have the system of interacting D0-branes. The
coupling constant is provided by the �QCD parameter which can be most naturally obtained
from the mass of the adjoint scalar breaking N = 4 to 2 via a dimensional transmutation
procedure.

One way to explain the need for the additional D0s in IIA theory or KK modes in M-
theory is as follows. It is known that any finite-dimensional integrable system with the spectral
parameter allows the canonical transformation to the variables–spectral curve with the linear
bundle. The spectral curve role is transparent and KK modes provide the linear bundle. As we
have already noted they are responsible for the non-perturbative contribution but the summation
of the infinite number of instantons into the finite number of degrees of freedom remains a
challenging problem. It is worth noting that both canonical coordinates in the dynamical
system come from the coordinates of D0-branes in different dimensions. The necessity for the
additional non-perturbative degrees of freedom has also been discussed in [13].

To show how objects familiar in the integrability world are translated into the brane
language consider two examples. First, let us consider the equations of motion in the Toda
chain which has the Lax form

dT

ds
= [T ,A] (1)

1 The latest developments within the Whitham approach as well as a list of references can be found in [10].
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with some Nc ×Nc matrices T and A. The Lax matrix T can be related to the Nahm matrix for
the chain of monopoles using the identifications of the spectral curves for the cyclic monopole
configuration and the periodic Toda chain [14]. These result in the following expression for
the Toda Lax operator in terms of the Nahm matrices Ti :

T = T1 + iT2 − 2iT3ρ + (T1 − iT2)ρ
2 (2)

T1 = i

2

∑
j=1

qj (E+j + E−j )

T2 = −
∑
j=1

qj (E+j − E−j )

T3 = i

2

∑
j

pjHj

(3)

where E and H are the standard SU(N) generators, pi, qi represent the Toda phase space, and
ρ is the coordinate on the CP 1 above. This CP 1 is involved in the twistor construction for
monopoles and a point on CP 1 defines the complex structure on the monopole moduli space.
With these definitions the Toda equation of motion and the Nahm equation are identical.
Having in mind the brane interpretation of the Nahm data [16] we can claim that the equations
of motion provide the conditions for the required supersymmetry of the whole configuration.

As another example of the validity of the brane-integrability correspondence we mention
the possibility of incorporating the fundamental matter in the gauge theory via branes in two
ways. The first one concerns the semi-infinite D4-branes, while the second one involves the
set of Nf D6-branes. One can expect two different integrable systems behind and they were
found in [5, 24]. It was shown in [7] that they correspond perfectly to the brane pictures and
it appears that the equivalence of two representations agrees with some duality property in the
dynamical system. Recently, one more ingredient of the brane approach-orientifold has been
recognized within the integrability approach [9]. To conclude the discussion of the many-body
dynamical systems, let us mention that one can invert the logic and use the possible integrable
deformations of the dynamical system to construct their field theory counterparts. Along this
line of reasoning we can expect some unusual field theories with the several �-type scales [7].

2. Dualities in integrable systems and SYM theories

We are going to study the phenomenon of duality, the precise definition of which is presented
shortly. Duality is a subject of much recent investigation in the context of (supersymmetric)
gauge theories, in which case the duality is an involution, which maps the observables of one
theory to those of another. The duality is powerful when the coupling constant in one theory
is the inverse of that in another (or more generally, when a small coupling is mapped to a
strong one). For example, a weakly coupled (magnetic) theory can be dual to the strongly
coupled (electric) theory thus making it possible to understand the strong-coupling behaviour
of the latter. In particular, it was shown [1] that using the concept of duality one can find
an exact low-energy Lagrangian of N = 2, d = 4 SU(2) gauge theory. A more fascinating
recent development is that the duality connecting weak- and strong-coupling regimes of one or
different theories may have a geometric origin. The most notorious example of that is provided
by M-theory. Having in mind the relation between many-body systems and effective actions in
SYM theories it is natural to obtain the natural dualities within the integrability approach. Both
dynamical systems and gauge theories benefit from establishing this correspondence which
was formulated in [25, 26]. The brane picture for the Hitchin-like systems presented above
plays an important role in the derivation of the proper degrees of freedom.
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2.1. T duality and separation of variables

There are three essentially different dualities which manifest themselves in dynamical systems
of Hitchin type. Let us start with the analogue of T duality in the Hitchin-like systems [26]. It
appears that the proper analogue of T duality can be identified with the separation of variables
in the dynamical systems.

A way of solving a problem with many degrees of freedom is to reduce it to a problem with
a smaller number of degrees of freedom. The solvable models allow one to reduce the original
system with N degrees of freedom to N systems with one degree of freedom which reduces
to quadratures. This approach is called the separation of variables (SoV). Recently, Sklyanin
formulated a ‘magic recipe’ for the SoV in the large class of quantum integrable models with a
Lax representation [29]. The method reduces in the classical case to the technique of separation
of variables using poles of the Baker–Akhiezer function (see also [24] for recent developments
and more references). The basic strategy of this method is to look at the Lax eigenvector
(which is the Baker–Akhiezer function) �(z, λ):

L(z)�(z, λ) = λ(z)�(z, λ) (4)

with some choice of normalization. The poles zi of �(z, λ) together with the eigenvalues
λi = λ(zi) are the separated variables. In all the examples studied so far the most naive
method of normalization leads to the canonically conjugate coordinates λi, zi .

Note that the phase space for the Hitchin system can be identified with the cotangent
bundle to the moduli space of the holomorphic vector bundle T ∗M on the surface �. The
following symplectomorphisms can be identified with the separation of variables procedure.
The phase space above allows two more formulations; as the pair (C,L), where C is the
spectral curve of the dynamical system and L is the linear bundle or as the Hilbert scheme
of points on T ∗�, where the number of points follows from the rank of the gauge group. It
is the latter formulation which provides the separated variables. The role of Hilbert schemes
on T ∗� in the context of the Hitchin system was established for the surfaces without marked
points in [33] and generalized for the systems of Calogero type in [26, 34, 35].

In brane terms the separation of variables can be formulated as a reduction to a system
of D0-branes on some four-dimensional (4D) manifold. It reminds one of a reduction to a
system of point-like instantons on a (generically non-commutative [30]) 4-manifold. One
more essential point is that separated variables amount to some explanation of the relation of
the periodic Toda chain above and monopole chains. Indeed, monopole moduli spaces have a
structure resembling that for the Toda chain in separated variables; both of them are the Hilbert
schemes of points on similar 4-manifolds.

The above-mentioned constructions of the separation of variables in integrable systems
on moduli spaces of holomorphic bundles with some additional structures can be described as
a symplectomorphism between the moduli spaces of the bundles (more precisely, torsion-free
sheaves) having different Chern classes.

To be specific, let us concentrate on the moduli space M�v of stable torsion-free coherent
sheaves E on S. Let ÂS = 1 − [pt] ∈ H ∗(S, Z) be the A-roof genus of S. The vector

�v = Ch(E)
√
ÂS = (r; �w; d − r) ∈ H ∗(S, Z), �w ∈ (3,19 corresponds to the sheaves with the

Chern numbers:

ch0(E) = r ∈ H 0(S;Z) (5)

ch1(E) = �w ∈ H 2(S;Z) (6)

ch2(E) = d ∈ H 4(S;Z). (7)
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Type IIA string theory compactified on S has BPS states, corresponding to theDp-branes, with
p even, wrapping various supersymmetric cycles in S, labelled by �v ∈ H ∗(S, Z). The actual
states correspond to the cohomology classes of the moduli spaces M�v of the configurations of
branes. The latter can be identified with the moduli spaces M�v of appropriate sheaves.

The string theory, compactified on S has moduli space of vacua, which can be identified
with

MA = O
(
(4,20

) \O(4, 20;R)/O(4;R) × O(20;R)
where the arithmetic group O((4,20) is the group of discrete authomorphisms. It maps the
states corresponding to different �v to each other. The only invariant of its action is �v2.

We have studied three realizations of an integrable system. The first one uses the non-
Abelian gauge fields on the curve � embedded into the symplectic surface S. Namely, the
phase space of the system is the moduli space of stable pairs: (E, φ), where E is a rank-r
vector bundle over � of degree l, while φ is the holomorphic section of ω1

� ⊗ End(E). The
second realization is the moduli space of pairs (C,L), where C is the curve (divisor) in S

which realizes the homology class r[�] and L is the line bundle on C. The third realization is
the Hilbert scheme of points on S of length h, where h = 1

2 dim M.
The equivalence of the first and the second realizations corresponds to the physical

statement that the bound states of N D2-branes wrapped around � are represented by a
single D2-brane which wraps a holomorphic curve C which is an N -sheeted covering of the
base curve �. It is natural to attribute the equivalence of the second and the third descriptions
to T -duality.

Let us mention that the separation of variables above provides some insights into the
Langlands duality which involves the spectrum of Hitchin Hamiltonians. The attempt to
reformulate the Langlands duality as a quantum separation of variables has been successful
for the Gaudin system corresponding to the spherical case [32]. The consideration in [25]
suggests that the proper classical version of the Langlands correspondence is the transition
to the Hilbert scheme of points on a four-dimensional manifold. This viewpoint implies that
the quantum case can be considered as the correspondence between the eigenfunctions of the
Hitchin Hamiltonians and solutions to the Baxter equation in the separated variables.

2.2. S-duality

Now let us explain that S-duality, well established in the field theory, also has a clear counterpart
in the holomorphic dynamical system.

The action variables in the dynamical system are the integrals of the meromorphic
differential λ over theA-cycles on the spectral curve. The reason for discarding theB-cycles is
simply the fact that theB-periods of λ are not independent of theA-periods. On the other hand,
one can choose as the independent periods the integrals of λ over any Lagrangian subspace in
H1(Tb;Z).

This leads to the following structure of the action variables in the holomorphic setting.
Locally over a disc inB one chooses a basis inH1 of the fibre together with the set ofA-cycles.
This choice may differ over another disc. Over the intersection of these discs one has an
Sp(2m,Z) transformation relating the bases. Altogether they form an Sp(2m,Z) bundle. It
is an easy exercise on the properties of the period matrix that the 2-form

dI i ∧ dIDi (8)

vanishes. Therefore, one can always locally find a function F-prepotential, such that

IDi = ∂F
∂I i

. (9)
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The angle variables are uniquely reconstructed once the action variables are known.
To illustrate the meaning of the action–action AA duality we look at the two-body system,

relevant for the SU(2) N = 2 supersymmetric gauge theory:

H = p2

2
+ �2 cos(q) (10)

where �2 is a complex number—the coupling constant of a two-body problem and at the same
time a dynamically generated scale of the gauge theory. The action variable is given by one of
the periods of the differential p dq. Let us introduce more notation: x = cos(q), y = p sin(q)√−2�

,

u = H
�2 . Then the spectral curve, associated with the system which is also a level set of the

Hamiltonian, can be written as follows:

y2 = (x − u)(x2 − 1) (11)

which is exactly a Seiberg–Witten curve. The periods are

I =
∫ 1

−1

√
x − u

x2 − 1
dx ID =

∫ u

1

√
x − u

x2 − 1
dx. (12)

They obey the Picard–Fuchs equation:(
d2

du2
+

1

4(u2 − 1)

) (
I

ID

)
= 0

which can be used to write down an asymptotic expansion of the action variable near u = ∞
or u = ±1 as well as that of the prepotential. The AA duality is manifested in the fact that near
u = ∞ (which corresponds to the high-energy scattering in the two-body problem and also a
perturbative regime of SU(2) gauge theory) the appropriate action variable is I (it experiences
a monodromy I → −I as u goes around ∞), while near u = 1 (which corresponds to the
dynamics of the two-body system near the top of the potential and to the strongly coupled
SU(2) gauge theory) the appropriate variable is ID (which corresponds to a weakly coupled
magneticU(1)gauge theory and is actually well defined near theu = 1 point). The monodromy
invariant combination of the periods [28]:

IID − 2F = u (13)

(whose origin lies in the periods of Calabi–Yau manifolds, on the one hand, and in the properties
of the anomaly in the theory, on the other hand) can be chosen as a global coordinate on the
space of integrals of motion. At u → ∞ the prepotential has an expansion of the form

F ∼ 1
2u log u + · · · ∼ I 2 log I +

∑
n

fn

n
I 2−4n.

Let us emphasize that S-duality maps the dynamical system to itself. We have seen that the
notion of a prepotential can be introduced for any holomorphic many-body system, however,
its physical meaning as well as its properties deserve further investigation.

2.3. ‘Mirror’ symmetry in dynamical systems

The last type of duality we would like to discuss concerns dualities between pairs of dynamical
systems [25, 37]. To start with let us recall how this symmetry is formulated within the field
theory. The initial motivation comes from the three-dimensional (3D) theory example [36],
where the mirror symmetry interchanges the Coulomb and Higgs branches of the moduli space.
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The specifics of three dimensions is that both Coulomb and Higgs branches are hyper-Kähler
manifolds and the mirror symmetry can be formulated as a kind of hyper-Kähler rotation. The
attempt to formulate a similar symmetry for a 4D theory was performed in [19].

In [25] the general procedure for the analogous symmetry within an integrable system
in terms of Hamiltonian and Poissonian reductions was formulated. Symmetry maps one
dynamical system with coordinates xi to another one whose coordinates coincide with the
action variables of the initial system and vice versa. It appears that taking into account the
relation between dynamical systems and low-energy effective actions, this duality, in general,
maps Higgs and Coulomb branches of the moduli space in the gauge theories in different
dimensions.

Qualitatively this symmetry is even more transparent in terms of separated variables.
As was discussed above the proper object in separated variables is the hyper-Kähler four-
dimensional manifold which provides the phase space. In most general situations the manifold
involves two tori or an elliptically fibred K3 manifold. One torus provides momenta, while
the second one provides coordinates. The duality at hand actually interchanges momentum
and coordinate tori and in the generic case self-duality is expected. The corresponding field
theory counterpart is the hypothetical six-dimensional theory with adjoint matter.

All other cases correspond to some degeneration. Degeneration of the momentum torus
to C/Z2 corresponds to the transition to the five-dimensional theory, while degeneration to
R2 corresponds to four-dimensional theory. Since the modulus of the coordinate torus has the
meaning of a complexified bare coupling in the theory, the interpretation of the degeneration
of the coordinate torus is different. Degeneration to the cylinder corresponds to switching off
the instanton effects, while rational degeneration corresponds to the additional degeneration.

We will see below that the ‘mirror’ symmetry maps theories in different dimensions to
each other. Instanton effects in one theory ‘map’ into the additional compact dimension in the
dual counterpart. We will discuss mainly the classical case with only a few comments on the
quantum picture. Since the wavefunctions in the Hitchin-like systems can be identified with
some solutions to the KZ or qKZ equations the quantum duality would mean some relation
between solutions to the rational, trigonometric or elliptic KZ equations. Recently, proper
symmetries for KZ equations were discussed in [31].

2.3.1. Two-body system (SU(2)). Let us discuss first a two-body system corresponding
to the SU(2) case. In the two-particle systems which we are going to consider reducing
(after exclusion of the centre-of-mass motion) to a one-dimensional problem, the action-
angle variables can be written explicitly and the dual system emerges immediately once the
natural Hamiltonians are chosen. The problem is the following. Suppose the phase space is
coordinatized by (p, q). The dual Hamiltonian (in the sense of AC duality) is a function of
q expressed in terms of I, ϕ, where I, ϕ are the action-angle variables of the original system:
HD(I, ϕ) = HD(q). In all the cases below there is a natural choice of HD(q).

Consider as an example the elliptic Calogero model whose Hamiltonian is

H(p, q) = p2

2
+ ν2℘τ (q). (14)

Here p, q are complex, ℘τ (q) is the Weierstrass function on the elliptic curve Eτ :

℘τ (q) = 1

q2
+

∑
(m,n)∈Z2

(m,n)�=(0,0)

1

(q + mπ + nτπ)2
− 1

(mπ + nτπ)2
. (15)
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Let us introduce the Weierstrass notation: x = ℘τ (q), y = ℘τ (q)
′. We have an equation

defining the curve Eτ :

y2 = 4x3 − g2(τ )x − g3(τ ) = 4
3∏

i=1

(x − ei)

3∑
i=1

ei = 0. (16)

The holomorphic differential dq onEτ equals dq = dx/y. Introduce the variable e0 = 2E/ν2.
The action variable is one of the periods of the differential p dq

2π on the curve E = H(p, q):

I = 1

2π

∮
A

√
2(E − ν2℘τ (q)) = 1

4π i

∮
A

dx
√
x − e0√

(x − e1)(x − e2)(x − e3)
. (17)

The angle variable can be determined from the condition dp ∧ dq = dI ∧ dϕ:

dϕ = 1

2iT (E)

dx√∏3
i=0(x − ei)

(18)

where T (E) normalizes dϕ in such a way that the A period of dϕ is equal to 2π :

T (E) = 1

4π i

∮
A

dx√∏3
i=0(x − ei)

. (19)

Thus,

2iT (E) dϕ = dx√
4

∏3
i=0(x − ei)

(20)

ω dϕ = dt√
4

∏3
i=1(t − ti)

(21)

where

ω = −2iT (E)
√
e01e02e03 = 1

2π

∮
A

dt√
4

∏3
i=1(t − ti)

(22)

t = 1

x − e0
+

1

3

3∑
i=1

1

e0i
ti = 1

3

3∑
j=1

eji

e0ie0j
(23)

where eij = ei − ej .
Introduce a meromorphic function on Eτ :

ĉnτ (z) =
√
x − e1

x − e3
(24)

where z has periods 2π and 2πτ . It is an elliptic analogue of the cosine (in fact, up to a
rescaling of z it coincides with the Jacobi elliptic cosine). Then we have

HD(I, ϕ) = ĉnτ (z) = ĉnτE (ϕ)

√
1 − ν2e13

2E − ν2e3
(25)

where τE is the modular parameter of the relevant spectral curve v2 = 4
∏3

i=1(t − ti):

τE =
∮

B

dt√
4

∏3
i=1(t − ti)

 / ∮
A

dt√
4

∏3
i=1(t − ti)

. (26)
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For large I , 2E(I) ∼ I 2.
Therefore, the elliptic Calogero model with a rational dependence on momentum and an

elliptic one on the coordinate maps into the ‘mirror’ dual system with an elliptic dependence
on the momentum and a rational one on the coordinate. On the field theory side d = 4 theory
with adjoint matter maps into d = 6 theory with adjoint matter with the instanton corrections
switched off. The coordinates on the Coulomb branch in d = 4 theory become the coordinates
on the ‘Higgs branch’ in d = 6 theory, which explains the origin of the term ‘mirror’ symmetry
in this context.

2.3.2. Many-body systems. Now we would like to demonstrate how the ‘mirror’ transform
can be formulated in terms of a Hamiltonian or Poissonian reduction procedure. It appears that
it corresponds in some sense to the simultaneous change of the gauge fixing and Hamiltonians.
The meaning of these words will become clearer from the examples below.

We summarize the systems and their duals in rational and trigonometric cases in the
following table:

rat. CM ↔ rat. CM

R → 0 ↑ ↑ β → 0

trig. CM ↔ rat. RS

β → 0 ↑ ↑ R → 0.

trig. RS ↔ trig. RS

(27)

Here CM denotes Calogero–Moser models and RS denotes Ruijsenaars–Schneider. The
parameters R and β here are the radius of the circle the coordinates of the particles take values
within and the inverse speed of light, respectively. The horizontal arrows in this table are the
dualities, relating the systems on both sides. Most of these were discussed by Ruijsenaars
[37]. We note that the duality transformations form a group which in the case of self-dual
systems listed here contains SL2(Z). The generator S is the horizontal arrow described below,
while the T generator is, in fact, a certain finite time evolution of the original system (which is
always a symplectomorphism, which maps the integrable system to the dual one). We begin
by recalling the Hamiltonians of these systems. Throughout this section qij denotes qi − qj .

Consider the space AT 2 of SU(N) gauge fields A on a 2-torus T 2 = S1 × S1. Let the
circumferences of the circles be R and β. The space AT 2 is acted on by a gauge group G,
which preserves a symplectic form

= = k

4π2

∫
Tr δA ∧ δA (28)

with k being an arbitrary real number for now. The gauge group acts via evaluation at some
point p ∈ T 2 on any coadjoint orbit O of G, in particular, on O = CP

N−1. Let (e1 : . . . : eN)
be the homogeneous coordinates on O. Then the moment map for the action of G on AT 2 × O
is

kFA + Jδ2(p) Jij = iν(δij − eie
∗
j ) (29)

where FA is the curvature 2-form. Here we think of ei as being the coordinates on C
N

constrained so that
∑

i |ei |2 = N and considered up to the multiplication by a common phase
factor.

Let us provide a certain number of commuting Hamiltonians. Obviously, the eigenvalues
of the monodromy ofA along any fixed loop on T 2 commute with themselves. We consider the
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reduction at the zero level of the moment map. We have at leastN−1 functionally independent
commuting functions on the reduced phase space Mν .

Let us estimate the dimension of Mν . If ν = 0 then the moment equation forces the
connection to be flat and therefore its gauge orbits are parametrized by the conjugacy classes of
the monodromies around two non-contractible cycles on T 2: A and B. Since the fundamental
group π1(T

2) of T 2 is Abelian A and B are to commute. Hence they are simultaneously
diagonalizable, which makes M0 a 2(N − 1)-dimensional manifold. Note that the generic
point on the quotient space has a non-trivial stabilizer, isomorphic to the maximal torus T of
SU(N). Now, in the presence of O the moment equation implies that the connection A is flat
outside of p and has a non-trivial monodromy around p. Thus,

ABA−1B−1 = exp(RβJ ) (30)

(the factor Rβ comes from the normalization of the delta-function). If we diagonalize A, then
B is uniquely reconstructed up to the right multiplication by the elements of T . The potential
degrees of freedom in J are ‘eaten’ up by the former stabilizer T of a flat connection: if
we conjugate both A and B by an element t ∈ T then J becomes conjugated. Now, it is
important that O has dimension 2(N − 1). The reduction of O with respect to T consists
of a point and does not contribute to the dimension of Mν . Thereby we expect to obtain an
integrable system. Without doing any computations we already know that we obtain a pair of
dual systems. Indeed, we may choose as the set of coordinates the eigenvalues of A or the
eigenvalues of B.

The two-dimensional picture has the advantage that the geometry of the problem suggests
the SL2(Z)-like duality. Consider the operations S and T realized as

S : (A,B) �→ (ABA−1, A−1) T : (A,B) �→ (A,BA) (31)

which corresponds to the freedom of choice of generators in the fundamental group of a 2-
torus. Note that both S and T preserve the commutator ABA−1B−1 and commute with the
action of the gauge group. The group ( generated by S and T in the limit β,R → 0 contracts
to SL2(Z) in the sense that we obtain the transformations by expanding

A = 1 + βP + · · · B = 1 + RQ + · · ·
for R, β → 0.

The disadvantage of the two-dimensional picture is the necessity to keep too many
redundant degrees of freedom. The first of the contractions actually allows us to replace
the space of two-dimensional gauge fields by the cotangent space to the (central extension of
the) loop group:

T ∗Ĝ = {(g(x), k∂x + P(x))}
which is a ‘deformation’ of the phase space of the previous example (Q(x) became promoted
to a group-valued field). The relation to the two-dimensional construction is the following.
Choose a non-contractible circle S1 on the 2-torus which does not pass through the marked
point p. Let x, y be the coordinates on the torus and y = 0 is the equation of the S1. The
periodicity of x is β and that of y is R. Then

P(x) = Ax(x, 0), g(x) = P exp
∫ R

0
Ay(x, y) dy.

The moment map equation looks as follows:

kg−1∂xg + g−1Pg − P = Jδ(x) (32)
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with k = 1
Rβ

. The solution of this equation in the gauge P = diag(q1, . . . , qN) leads to the
Lax operator A = g(0) with R, β exchanged. On the other hand, if we diagonalize g(x):

g(x) = diag
(
z1 = eiRq1 , . . . , zN = eiRqN

)
(33)

then a similar calculation leads to the Lax operator

B = P exp
∮

1

k
P (x) dx = diag(eiθi ) exp iRβνr

with

rij = 1

1 − eiRqji
i �= j rii = −

∑
j �=i

rij

thereby establishing the duality A ↔ B explicitly.
When Yang–Mills theory is formulated on a cylinder with the insertion of an appropriate

timelike Wilson line, it is equivalent to the Sutherland model describing a collection of N
particles on a circle. The observables Tr φk are precisely the integrals of motion of this system.
One can look at other supercharges as well. In particular, when the theory is formulated on a
cylinder there is another class of observables annihilated by a supercharge. One can arrange the
combination of supercharges which will annihilate the Wilson loop operator. By repeating the
procedure one arrives at the quantum mechanical theory whose Hamiltonians are generated
by the spatial Wilson loops. This model is nothing but the rational Ruijsenaars–Schneider
many-body system.

The self-duality of the trigonometric Ruijsenaars system has an even more transparent
physical meaning. Namely, the field theory whose quantum mechanical avatar is the
Ruijsenaars system is the three-dimensional Chern–Simons theory on T 2 × R1 with the
insertion of an appropriate temporal Wilson line and a spatial Wilson loop. It is the freedom
to place the latter which leads to several equivalent theories. The group of (self-)dualities of
this model is very big and is generated by the transformations S and T .

Finally, let us comment on six-dimensional theory compactified on a three-dimensional
torus T 3 down to three dimensions. As was discussed extensively in [38] in the case where
two out of the three radii of T 3 are much smaller then the third one R the effective three-
dimensional theory is a sigma model with the target space X being the hyper-Kähler manifold
(in particular, holomorphic symplectic) which is the total space of an algebraic integrable
system. The complex structure in which X is the algebraic integrable system is independent
of the radius R, while the Kähler structure depends on R in such a way that the Kähler class
of the Abelian fibre is proportional to 1/R.

The theory in three dimensions which came from four dimensions upon a compactification
on a circle whose low-energy effective action describes only Abelian degrees of freedom can
always be dualized to the theory of scalars/spinors only, due to the vector–scalar duality in
three dimensions. In this way different sets of vector and hypermultiplets in four dimensions
can lead to the same three-dimensional theory [19, 36].
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